MATH 732: CUBIC HYPERSURFACES

DAVID STAPLETON

1. The number 27

See the disclaimer section.
Let us start by assembling a number of facts we have proved, hinted at, given as exercises, or asserted.
(1) Let X be a smooth projective variety with a rank r vector bundle \mathcal{E}. If $s \in \mathrm{H}^{0}(\mathcal{E})$ is a section that meets the zero section transversely, then $c_{r}(\mathcal{E})=[(s=0)] \subseteq \mathrm{H}^{2 r}(X, \mathbf{Z})$.
(2) The Fano scheme of a degree d hypersurface $X=(F=0) \subseteq \mathbf{P}^{n+1}$ is the scheme theoretic zero locus

$$
\left(s_{F}=0\right) \subseteq \operatorname{Gr}(2, n+2)
$$

where $s_{F} \in \mathrm{H}^{0}\left(\operatorname{Gr}(2, n+2), \operatorname{Sym}^{d}\left(\mathcal{S}^{\vee}\right)\right)$ is the induced section.
(3) If $X=(F=0) \subseteq \mathbf{P}^{n+1}$ is a smooth cubic hypersurface, then it's Fano scheme:

$$
\mathrm{F}(X) \subseteq \operatorname{Gr}(2, n+2)
$$

is smooth of the expected dimension $2 n-4$. (In particular, the induced section s_{F} of $\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)$ meets the zero section transversely).

Proposition 1.1. The Grassmannian $\mathbf{G}=\operatorname{Gr}(2,4) \subseteq \mathbf{P}^{5}$ is a quadric hypersurface defined by the Plücker equation:

$$
X_{12} X_{34}-X_{13} X_{24}+X_{14} X_{23}=0
$$

For the (dual of the) tautological bundle \mathcal{S}^{\vee} we have:

$$
c_{1}\left(\mathcal{S}^{\vee}\right)=\left[H_{\mathbf{G}}\right] \quad \text { and } \quad c_{2}\left(\mathcal{S}^{\vee}\right)=[\Lambda] \subseteq \mathbf{G}
$$

where $\Lambda \subseteq \mathbf{G}$ is a 2-dimensional linear space.
Proof. Recall that the Grassmannian G can be parametrized by 2×4 matrices:

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right]
$$

such that the not all the minors $X_{i j}=\operatorname{det} A_{i j}$ vanish. These minors give the Plücker embedding.

The dual of the tautological sequence gives the quotient

$$
V^{\vee} \otimes_{k} \mathcal{O}_{\mathbf{G}} \rightarrow \mathcal{S}^{\vee} \rightarrow 0
$$

Taking \wedge^{2} gives the Plücker embedding as well. This shows that

$$
c_{1}\left(\operatorname{det}\left(\mathcal{S}^{\vee}\right)\right)=c_{1}\left(\operatorname{det}\left(\mathcal{S}^{\vee}\right)\right)=\left[H_{\mathbf{G}}\right] \in \mathrm{H}^{2}(\mathbf{G}, \mathbf{Z})
$$

Finally, \mathcal{S}^{\vee} is globally generated, so the zero locus of a general section computes $c_{2}\left(\mathcal{S}^{\vee}\right)$. The sections are determined by linear forms

$$
\lambda: V \rightarrow k
$$

The section λ vanishes at a 2-plane $W \subseteq V$ if and only if $\left.\lambda\right|_{W} \equiv 0$. In other words, the zero locus

$$
(\lambda=0) \subseteq \mathbf{G}
$$

paramatetrizes planes in V contained in $(\lambda=0) \simeq k^{3} \subseteq V$. This is a linearly embedded \mathbf{P}^{2}.
Lemma 1.2. If \mathcal{E} is a rank 2 vector bundle on X, then

$$
c_{4}\left(\operatorname{Sym}^{3} \mathcal{E}\right)=9 c_{2}(\mathcal{E})\left(2 c_{1}(\mathcal{E})^{2}+c_{2}(\mathcal{E})\right)
$$

Proof. This is of course an application of the splitting principle: which says that there's no harm in assuming \mathcal{E} is split when computing the Chern classes $\operatorname{Sym}^{3} \mathcal{E}$.
Let's write: $\mathcal{E}=\mathcal{O}(a) \oplus \mathcal{O}(b)$. Then

$$
c_{1}(\mathcal{E})=a+b \quad \text { and } \quad c_{2}(\mathcal{E})=a b
$$

Such a splitting would give rise to a splitting

$$
\operatorname{Sym}^{3}(\mathcal{E})=\mathcal{O}(3 a) \oplus \mathcal{O}(2 a+b) \oplus \mathcal{O}(a+2 b) \oplus \mathcal{O}(3 b)
$$

So we see

$$
\begin{aligned}
c_{4}\left(\operatorname{Sym}^{3}(\mathcal{E})\right) & =3 a(2 a+b)(a+2 b) 3 b \\
& =9 a b\left(2(a+b)^{2}+a b\right) \\
& =9 c_{2}(\mathcal{E})\left(2 c_{1}(\mathcal{E})^{2}+c_{2}(\mathcal{E})\right) .
\end{aligned}
$$

Theorem 1.3. Every smooth cubic surface contains exactly 27 lines.
Proof. We know by our previous comments that for a smooth cubic surface $X=(F=0) \subseteq \mathbf{P}^{3}$, the Fano scheme of X :

$$
F(X)=\left(s_{F}=0\right) \subseteq \operatorname{Gr}(2,4)
$$

is smooth and 0 -dimensional, so a finite collection of points (i.e. lines). We also know:

$$
[F(X)]=c_{4}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right) \in \mathrm{H}^{4}(\operatorname{Gr}(2,4), \mathbf{Z})
$$

So the degree of $c_{4}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)$ equals this number of lines.
By Lemma 1.2, we just need to compute
(1) $c_{2}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right) c_{1}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)^{2}$, and
(2) $c_{2}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)^{2}$.

The first is just the degree of the linearly embedded \mathbf{P}^{2} that represents $c_{2}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)$, i.e. 1. To compute $c_{2}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)^{2}$ amounts to asking how many planes are contained in the intersection of 2 hyperplanes in V. The answer is again 1. (In both of these answers we are using the projection formula for these Chern classes.)
So finally we have:

$$
\begin{aligned}
\binom{\text { number of }}{\text { lines in } X} & =\operatorname{deg}([F(X)]), \\
& =9\left(2 c_{2}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right) c_{1}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)+c_{2}\left(\operatorname{Sym}^{3}\left(\mathcal{S}^{\vee}\right)\right)\right), \\
& =9(2 \cdot 1+1)=27 .
\end{aligned}
$$

Remark 1.4. There are many proofs of this theorem to varying degrees of generality. In another direction, Segre [Seg42] computed the possible number of real lines in a smooth cubic surface:

$$
X \subseteq \mathbf{P}_{\mathbf{R}}^{3}
$$

Note, that as X is a real surface, the set of lines is defined over \mathbf{R}, so any complex lines must come in conjugate pairs. As the total number of complex lines is 27 , this guarantees the existence of at least 1 real line.
Segre broke the real lines into two types (based on a natural relative orientation $\mathrm{Sym}^{3} \mathcal{S}^{\vee}$) elliptic lines and hyperbolic lines:

(ell. lines)	(hyper. lines)	(total lines)
12	15	27
6	9	15
2	5	7
0	3	3

This shows that smooth real cubic surfaces always contain at least 3 lines! (Note, the difference between the number of types of lines is always 3.) There are other results over non-closed fields as well, see e.g. [KW21].
Remark 1.5. If $X=\left(x^{3}+y^{3}+z^{3}+w^{3}=0\right) \subseteq \mathbf{P}^{3}$ is the Fermat cubic surface, it is possible to just write down all 27 lines. Let $\zeta, \omega \in k$ be any two cubed root of -1 . Then

$$
L_{\zeta, \omega}=(y-\zeta x=w-\omega z=0) \subseteq \mathbf{P}^{3} .
$$

is contained in X. This gives 9 lines, and the rest can be found from the permutation action of \mathfrak{S}_{4} on X.
Exercise 1. Prove that the if \mathcal{E} is a globally generated vector bundle on a projective variety X then a general section $s \in \mathrm{H}^{0}(X, \mathcal{E})$ meets the zero section transversely.

Exercise 2. Count the number of lines in a general quintic threefold $X \subseteq \mathbf{P}^{4}$.

Exercise 3. Count the number of lines in a general septic (degree 7) fourfold $X \subseteq \mathbf{P}^{5}$.

References

[KW21] Jesse Leo Kass and Kirsten Wickelgren. An arithmetic count of the lines on a smooth cubic surface. Compos. Math., 157(4):677-709, 2021.
[Seg42] B. Segre. The Non-singular Cubic Surfaces. Oxford University Press, Oxford, 1942.

